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Random Walk on a Dynamic Graph Sequence

The random walk stays with probability 1/2 at the current location.
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Random Walks and Markov Chains

A class of Markov chains where a particle is moving on the vertices of a graph:

start from some specified vertex
at each step, jump to a randomly chosen neighbor
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Hitting Times (and Cover Times) on Static Graphs

Let thit (u, v) be the expected time for a random walk to go from u to v

Let thit (G) := maxu,v thit (u, v) be the hitting time of the graph G

Let tcov (G) the expected time to visit all vertices in G

Hitting and Cover Times

Some Classical Results:
For any graph, thit (G) ≤ tcov (G) ≤ thit ·O(log n)
[Matthews, Annals of Prob.’88]

For any graph, thit (G) ≤ tcov (G) ≤ 2|E |(|V | − 1) = O(n3)
[Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79]

For any graph, thit (G) ≤ tcov (G) ≤ 16 |E||V |
δ

⇒ thit (G) = O(n2) if G regular.

[Kahn, Linial, Nisan and Saks, J. Theoretical Prob.’88]

For any graph, thit (G) ≤ ( 4
27 + o(1)) · n3

[Brightwell and Winkler, RSA’90]

For any graph, tcov (G) ≤ ( 4
27 + o(1)) · n3

[Feige, RSA’95]
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Motivation: Dynamic Graphs

Many prevalent networks are dynamically changing.

a.k.a. as evolving, temporal or time-varying graph

Wireless/Mobile Networks

Big data scenario 

Genome sequences for many species are available:  
each megabytes to gigabytes in size. 
 

There are about 1 billion monthly active  
users in Facebook. 

There are 5 billion global mobile phone users. 

100 hours of videos uploaded per minute 

Social Networks

(Distributed) Algorithms

7
10

3
10

Particle Processes
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Agenda of this Talk

We are interested in studying the following quantities on a sequence of dynamic
graphs G = (G1,G2, . . .) on a fixed set vertices:

Mixing time Number of steps needed for the distribution of the walk to
become ε-close to the stationary distribution

Hitting times Expected number of steps to go from u to v thit (u, v)

For static connected graphs:

regular case O(n2) mixing and hitting times

general case O(n3) mixing and hitting times

For dynamic connected graphs:

If π(t) changes over time, in general, we don’t have mixing

Can we at least say something about hitting times?

Random Walks on Sequences of Connected Graphs 8
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Related Work: A Dichotomy for dynamic graphs

1. If π(t) changes over time,

hitting (and covering) can take exponential time

this holds even if π(t) changes slowly

2. If all graphs are connected and regular (⇒ π(t) is always uniform),

mixing in O(n2 log(n)) steps

hitting and covering in O(n3 log2(n)) steps

Avin, Koucky, and Lotker (ICALP’08, RSA’18)
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Hitting Times can be bad! (The Sisyphus Graph)
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Our Results

1. If π(t) changes over time,
hitting (and covering) can take exponential time

this holds even if π(t) changes slowly

2. If all graphs are connected and regular (⇒ π(t) is always uniform),
mixing in O(n2 log(n)) steps

hitting and covering in O(n3 log2(n)) steps

Avin, Koucky, and Lotker (ICALP’08, RSA’18)

1. If all graphs are connected and regular,

mixing and hitting in O(n2) steps (optimal)

2. More generally, if π(t) = π for any t ,

mixing in O(n3) steps (optimal)
hitting in O(n3 log(n)) steps (nearly optimal)

Our Results

How can we derive these results?

Random Walks on Sequences of Connected Graphs 11
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Classical Proof (Spanning Tree Approach)

For any static graph G, tcov (G) ≤ 2(n − 1)|E |).
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

Proof:

Take a spanning tree T in G

Consider a traversal that goes
through every edge in T twice

For any connected vertices i, j ,
thit (i, j) + thit (j, i) = 2|E |
Thus,

tcov (G) ≤
∑

(i,j)∈E(T )

thit (i, j) + thit (j, i)

≤ 2(n − 1) · |E |.
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Classical Proof (Refinement based on Shortest Path)

For any static graph with diameter D, thit (G) ≤ 2|E | · D.
(cf. Aldous, Fill’02)

Proof:

Fix two vertices s, t , and consider a shortest path P = (u0 = s, u1, . . . , ul = t)

As before thit (ui , ui+1) ≤ 2|E |.
Thus,

thit (s, t) ≤
D−1∑
i=0

thit (ui , ui+1)

≤
D−1∑
i=0

2|E | = 2|E |D

This proves not only a bound of O(n3) for any graph, but also O(n2) for regular graphs.

Both proofs crucially rely on a static spanning tree or static shortest path!
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Return Times on Dynamic Graphs

A fundamental fact of the return times is that:

thit (u, u) =
1

π(u)
.

Is this true for dynamic graphs?

No!
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Many combinatorial and probabilistic arguments seem to fail,
but what about the t-step probabilities (and return probabilities)?
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Diffusion of a Random Walk on a Static Cycle
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0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Step: 0

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time

Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle

0.500

0.250

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.250

Step: 1

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time

Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle
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Step: 2

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle
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Step: 3

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1
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2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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As long as the probability mass is concentrated on a small set of vertices,
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√
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This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle
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Diffusion of a Random Walk on a Static Cycle
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Step: 6

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
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2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle
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Step: 7

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
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√
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This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle
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As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1
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√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle
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Step: 9

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm
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This property only requires each graph Gt to be connected (& regular) at each time
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As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.168

0.154

0.119

0.076

0.041

0.020

0.013

0.020

0.041

0.076

0.119

0.154

Step: 11

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.161

0.149

0.117

0.078

0.044

0.023

0.016

0.023

0.044

0.078

0.117

0.149

Step: 12

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.155

0.144

0.115

0.079

0.048

0.027

0.020

0.027

0.048

0.079

0.115

0.144

Step: 13

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.149

0.139

0.113

0.080

0.050

0.030

0.023

0.030

0.050

0.080

0.113

0.139

Step: 14

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.144

0.135

0.112

0.081

0.053

0.033

0.027

0.033

0.053

0.081

0.112

0.135

Step: 15

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.140

0.132

0.110

0.082

0.055

0.037

0.030

0.037

0.055

0.082

0.110

0.132

Step: 16

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.136

0.128

0.108

0.082

0.057

0.040

0.033

0.040

0.057

0.082

0.108

0.128

Step: 17

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.132

0.125

0.107

0.082

0.059

0.042

0.036

0.042

0.059

0.082

0.107

0.125

Step: 18

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.129

0.122

0.105

0.083

0.061

0.045

0.039

0.045

0.061

0.083

0.105

0.122

Step: 19

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.126

0.120

0.104

0.083

0.062

0.048

0.042

0.048

0.062

0.083

0.104

0.120

Step: 20

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.123

0.117

0.103

0.083

0.064

0.050

0.045

0.050

0.064

0.083

0.103

0.117

Step: 21

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.120

0.115

0.101

0.083

0.065

0.052

0.047

0.052

0.065

0.083

0.101

0.115

Step: 22

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time

Random Walks on Sequences of Connected Graphs 15



Diffusion of a Random Walk on a Static Cycle

0.117

0.113

0.100

0.083

0.066

0.054

0.050

0.054

0.066

0.083

0.100

0.113

Step: 23

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.115

0.111

0.099

0.083

0.067

0.056

0.052

0.056

0.067

0.083

0.099

0.111

Step: 24

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.113

0.109

0.098

0.083

0.069

0.058

0.054

0.058

0.069

0.083

0.098

0.109

Step: 25

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.111

0.107

0.097

0.083

0.070

0.060

0.056

0.060

0.070

0.083

0.097

0.107

Step: 26

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.109

0.106

0.096

0.083

0.070

0.061

0.058

0.061

0.070

0.083

0.096

0.106

Step: 27

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.107

0.104

0.095

0.083

0.071

0.063

0.059

0.063

0.071

0.083

0.095

0.104

Step: 28

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.106

0.103

0.094

0.083

0.072

0.064

0.061

0.064

0.072

0.083

0.094

0.103

Step: 29

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.104

0.101

0.094

0.083

0.073

0.065

0.063

0.065

0.073

0.083

0.094

0.101

Step: 30

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.103

0.100

0.093

0.083

0.074

0.067

0.064

0.067

0.074

0.083

0.093

0.100

Step: 31

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.101

0.099

0.092

0.083

0.074

0.068

0.065

0.068

0.074

0.083

0.092

0.099

Step: 32

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.100

0.098

0.092

0.083

0.075

0.069

0.066

0.069

0.075

0.083

0.092

0.098

Step: 33

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.099

0.097

0.091

0.083

0.075

0.070

0.068

0.070

0.075

0.083

0.091

0.097

Step: 34

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.098

0.096

0.091

0.083

0.076

0.071

0.069

0.071

0.076

0.083

0.091

0.096

Step: 35

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.097

0.095

0.090

0.083

0.076

0.071

0.070

0.071

0.076

0.083

0.090

0.095

Step: 36

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.096

0.094

0.090

0.083

0.077

0.072

0.071

0.072

0.077

0.083

0.090

0.094

Step: 37

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.095

0.094

0.089

0.083

0.077

0.073

0.071

0.073

0.077

0.083

0.089

0.094

Step: 38

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.094

0.093

0.089

0.083

0.078

0.074

0.072

0.074

0.078

0.083

0.089

0.093

Step: 39

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.094

0.092

0.089

0.083

0.078

0.074

0.073

0.074

0.078

0.083

0.089

0.092

Step: 40

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.093

0.092

0.088

0.083

0.078

0.075

0.074

0.075

0.078

0.083

0.088

0.092

Step: 41

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.092

0.091

0.088

0.083

0.079

0.075

0.074

0.075

0.079

0.083

0.088

0.091

Step: 42

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.092

0.091

0.088

0.083

0.079

0.076

0.075

0.076

0.079

0.083

0.088

0.091

Step: 43

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.091

0.090

0.087

0.083

0.079

0.077

0.075

0.077

0.079

0.083

0.087

0.090

Step: 44

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.091

0.090

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.090

Step: 45

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.090

0.089

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.089

Step: 46

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.090

0.089

0.087

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.087

0.089

Step: 47

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.089

0.089

0.086

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.086

0.089

Step: 48

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 49

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 50

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time
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Diffusion of a Random Walk on a Static Cycle

As long as the probability mass is concentrated on a small set of vertices,
substantial progress in the `2-norm

More precisely, ‖pt
u,. − 1

n‖
2
2 ∼ 1/

√
t

This property only requires each graph Gt to be connected (& regular) at each time

Random Walks on Sequences of Connected Graphs 15



Mixing in Dynamic Graphs: Definition

Sequence of graphs G = {G(t)}∞t=1 on V with transition matrices {P(t)}∞t=1

πP(t) = π for any t

tmix (G) = min

t

∣∣∣∣∣∣
∑
y∈V

(
P [0,t](x , y)− 1

n

)2

≤ 1
10n

∀ x ∈ V

 .

`2-mixing time

extends to non-regular in a natural way
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A Bound on the `2-Decrease

Let P be the transition matrix of a random walk on a connected, regular graph
G = (V ,E). Then for any probability distribution σ,

∑
u,v∈V

(σ(u)− σ(v))2 · Pu,v &
∑
u∈V

(
σ(u)− 1

n

)2

.

Key Lemma

Proof Sketch:

As long as ‖σ − 1
n‖

2
2 is large⇒ σ is concentrated on a small set of vertices

⇒∃ short path between x? = argmaxx σ(x) and y s.t. σ(y)� σ(x?)

⇒ Let ` be the length of such path. Then,∑
u,v∈V

(σ(u)− σ(v))2Pu,v ≥
(σ(x?)− σ(y))2

2`
is large
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Main Result (covering also non-regular graphs)

Let G be a sequence of connected graphs of n vertices with unique stationary
distribution π. Moreover, denote with π∗ = minx π(x). Then:

tmix (G) = O(n/π∗)

thit (G) = O(n log n/π∗).

If all graphs in G are regular, thit (G) = O(n2).

Theorem

To prove the bound on mixing:

Key Lemma⇒ if variance is ε, after O(n/(π∗ε)) steps it is less than ε/2

Hence after O(n/π∗) steps, variance will be small constant⇒ walk mixed

To prove the bound on hitting:

first obtain a refined bound on the variance decrease at each step

relate t-step probabilities to the decrease in variance of the walk

use probabilistic arguments to relate t-step probabilities to hitting times

What if the graphs in the sequence have good expansion?

If every graph G is a regular expander, tmix (G) = O(log n) and thit (G) = O(n)

Refinement of Theorem⇒ thit (G) = O(n) if the isoperimetric dimension of
each (bounded-degree) graph in G is 2 + ε

solves a conjecture by Aldous and Fill, which was proved by Benjamini and
Kozma (Combinatorica’05) for static graphs
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What happens when the connectivity properties of the graph
change over time?
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How to bound mixing when connectivity is intermittent

In static graphs, the eigenvalues of the individual transition matrices give a
good bound on mixing:

1
1− λ . tmix (G) .

log(n)

1− λ

This is not necessarily true for dynamic graphs:

Odd t

1− λ(P(t)) = 0

Even t

1− λ(P(t)) = 0
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Average transition probabilities

Odd t : 1− λ(P(t)) = 0

Even t : 1− λ(P(t)) = 0

Average transition probabilities P

1− λ(P) = Ω(1)
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Average transition probabilities

Odd t : 1− λ(P(t)) = 0

Even t : 1− λ(P(t)) = 0

Average transition probabilities P

1− λ(P) = Ω(1)
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Mixing based on average connectivity properties

Consider a sequence G with transition matrices {P(t)}∞t=1 such that

1. πP(t) = π for any t

2. there exists a time window T ≥ 1 such that, for any i ≥ 0, P
[i·T+1,(i+1)·T ]

is ergodic with spectral gap greater or equal than 1− λ
Then, tmix (G) = O(T 2 log(1/π∗)/(1− λ))

Theorem

Suppose that for any time window I = [i · T + 1, (i + 1) · T ] and any subset
of vertices A ⊆ V there exists i ∈ I such that ΦP(i)(A) ≥ φ. Then,

tmix (G) = O(T 3 log(1/π∗)/φ2)

Corollary

Since thit (G) = O(tmix (G)/π∗), does polynomial mixing time imply polynomial
hitting times?

NO! When the graphs are disconnected, π∗ can be exponentially small
Why? We can simulate a random walk on a directed graph:
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Simulating a Directed Graph using Dynamic Graphs

1/4 1/4

1/8 1/8

1/16 1/16

1/32 1/32

1/64 1/64

t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8Random Walk Behaviour:

Since the stationary distribution is exponentially small for the
vertices at the bottom, hitting time is exponential in n

However, average transition matrix P can be easily made ergodic
(add same cycle of n − 2 matrices in reverse order)

⇒mixing time polynomial in n by our theorem!
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Conclusions and further work

We have exhibited a dichotomy for random walks on dynamic graphs:

If stationary distribution does not change over time, behaviour is comparable
to static graphs

otherwise, they lose many nice properties associated with random walks on
static graphs (even when the changes in the stationary distribution are small,
e.g., all graphs are bounded-degree)

Bad counter-examples often simulate random walks on directed graphs.

Is there a more profound link between dynamic graphs and directed graphs?

Here we have only considered worst-case changes.

Can our methods be applied to settings where the graph changes randomly?

Conclusion 26
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