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Abstract

We employ convolutional neural networks to the task of automated essay
assessment. Our findings show that the task is better casted as a regression
problem rather than a classification one. We construct three models that
leverage pre-trained word embeddings and operate by applying convolving
filters over different textual units: characters, words and sentences. The
best results are obtained by the sentence-level model and the performance is
further enhanced by combining the predictions of this model with the ones
generated by using word convolutions on the document level. We study the
effects of different hyperparameters and network configurations such as filter
sizes, number of feature maps, activation functions and pooling operations.
The impact of fine-tuning the input vectors is examined and the effect of
training on more data is investigated. We further conduct a series of ex-
periments and an error analysis to explicate the networks’ behaviour. Our
results are promising and indicative of the ability of convolutional architec-
tures to evaluate writing quality directly from the text with no recourse to
handcrafted features.
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Chapter 1

Introduction

The task of assessing students’ essays has traditionally relied on human

graders and their judgement of writing quality. A plethora of attempts have

been made to develop systems that are able to automatically evaluate this

task [1], [2], [3], [4]. The merits of employing such systems are numerous.

It reduces the human labour involved in the task which makes the grading

process more cost- and time-efficient. Additionally, essay evaluation is sub-

jective, which leads to potential inconsistencies in the final scores when many

human graders are involved. Adopting an automated system can remedy this

since all the essays are graded according to the same criteria. Another ad-

vantage of automated scoring is enhancing the tutoring process by giving

feedback to students about what lowered their grades, hence helping them

improve their writing abilities.

Several automated essay assessment (hereafter AEA) systems rely on exces-

sive feature engineering where different textual features are extracted from

the training data and fed to a classification algorithm to be mapped to grade

classes or scores [1], [5], [6]. Such features might include linguistic, gram-

matical and discourse properties for the essays. Generating these features is

a daunting process that either involves manual annotation or relies on the

outputs of other imperfect systems such as syntactic parsers or coreference

resolution tools. Other systems leverage shallow statistical features such as
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sentence or essay length and use naive classifiers for predictions, which is an

oversimplification for the problem [3]. Furthermore, there are latent com-

plex textual features that encode aspects of writing quality yet they are hard

to handcraft and hence missed out even by the heavily feature-engineered

systems.

To remedy the shortcomings of the aforementioned systems, it is key to de-

velop models that rely on surface features, yet can utilize them to enrich

the feature space with more high-level hard-to-encode features. Thereby, we

propose employing Convolutional Neural Networks (CNNs) to address the

task of essay assessment. The network operates on simple word vector rep-

resentations and extracts more complex features with its different layers to

use in the final score prediction. To our knowledge, this is the first imple-

mentation of CNNs for essay scoring. We construct three models that apply

convolutional operations over different textual units (characters, words and

sentences) in an attempt to detect writing quality features and grade the

essays accordingly. A word convolution works as a feature detector to ex-

tract local contextual information from each window of words in the text

and learn possible erroneous word combinations. It aggregates these local

features later to extract a global feature vector for the whole essay to be as-

sessed. Character convolutions can be incorporated with convolutions ones

to leverage word morphological forms and intra-representations; hence, po-

tentially, detect some writing mistakes such as spelling ones. Sentence convo-

lutions employ a deeper network that convolves over words in each sentence

then over the sentences in the essay as a way to represent the bottom-up

structure of the essay and detect sentence-relationship features. This deep

sentence-level architecture outperforms the document-level word and char-

acter models. Moreover, the system performance is further enhanced with a

simple combination of the sentence and word models as a way to represent

sentence-level and document-level features.

Yannakoudakis et al. [6] compiled the First Certificate in English (FCE)

dataset from the Cambridge Learner Corpus (CLC) exam scripts and built

the state-of-the-art system to rank them. They exploited numerous lexical
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and grammatical features that were used to train rank preference Support

Vector Machines (SVMs) [7]. They relied on other resources such as parsers

and large corpora to handcraft their features. In the work described herein,

we address the same task using convolutional models. We train the system on

the public version of the FCE dataset as well as another bigger FCE dataset

(full FCE) and test our model on the same test scripts used by the state-

of-the-art to make our results comparable to theirs. Although our system

underperformed Yannakoudakis et al.’s model, it has interesting results that

show that CNNs are a promising avenue in AEA and indicate their ability

to learn inherent features for essay scoring directly from the text with no

recourse to handcrafted features.
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Chapter 2

Background

2.1 Feedforward Neural Networks

2.1.1 Overview

Feedforward neural networks (or multilayer perceptrons (MLP)) are one of

the most widely used models in supervised machine learning tasks. A network

aims at learning a function f that maps a set of labelled input instances to

their corresponding outputs:

y = f(x; θ) (2.1)

where y is the network’s predicted output, x is its input and θ represents the

parameters the network learns to make correct predictions. Neural networks

do not simply approximate one function, but rather evaluate multiple nested

functions:

y = fi(...f2(f1(x; θ1); θ2)...; θi) (2.2)

These functions represent the network layers and cascading them gives the

depth of the model, hence the notion of deep learning [8]. In the above

equation, f1 is the first layer, fi is the output layer and all the layers in

between are hidden layers. With this composition of functions, the network
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is able to extract higher-level features that are hard to manually encode.

An inherent part of neural models is the non-linear activation functions inter-

leaved with the network’s layers. Applying non-linearity enables the network

to detect even more complex non-linear features that cannot be extracted

by simple linear operations. Additionally, non-linearity is a way to limit the

parameters to a certain range of values1. The following is a description of

integrating the non-linearity in the model. In a neural network, the i-th

neuron (computational unit) in the j-th layer calculates its output a
(j)
i by:

a
(j)
i = g(

n(j−1)∑
k

θ
(j−1)
ki a

(j−1)
k + b

(j)
i ) (2.3)

where n(j−1) is the size of the previous layer, θ(j−1) ∈ Rn(j−1)×nj
is the weight

matrix controlling the mapping between the (j−1)-th layer and the j-th one,

g is a non-linear activation function and b
(j)
i ∈ R is a bias term. For the first

layer, a(j−1) represents the network’s input. Accordingly, the output of the

j-th layer is a composition of its neurons’ outputs and can be represented as:

a(j) =


a

(j)
1
...

a
(j)

nj

 (2.4)

where nj is the number of neurons in the layer. Hence, Equation 2.3 can be

written in vector form as:

a(j) = g((θ(j−1))T · a(j−1) + b) (2.5)

where T is the matrix transpose operation. The most commonly used non-

linear functions are:

• Logistic function, which is the most prominent type of sigmoid func-

1Sigmoid function limits the range to [0,1], tanh to [-1,1] and ReLU eliminates the
negative values.
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tions:

f(x) =
1

1 + e−x
(2.6)

• Hyperbolic tangent (tanh), which is a type of sigmoid functions:

f(x) =
1− e−2x

1 + e−2x
(2.7)

• Rectified linear unit (ReLU), which is a half-wave rectifier [9]:

f(x) = max(0, x) (2.8)

The final layer in a network performs the system’s prediction. The function-

ality of this layer varies according to the task which includes:

• Linear Regression: It is suitable for problems that have a real-valued

output (e.g. the prediction of house prices). In these problems, the

size of the output layer is a single neuron representing the system’s

prediction and calculated by applying Equation 2.5 with θ(j−1) ∈ Rn(j−1)

and b ∈ R.

• Softmax: In classification tasks, such as sentiment analysis or image

detection, where the output belongs to a finite set of labels, softmax

output layers are used. The size of the output layer ∈ Rc where c is

the number of output labels and Equation 2.5 is applied with θ(j−1) ∈
Rn(j−1)×c and b ∈ Rc. The following step is to apply a softmax operation

to the output vector to “squash” its elements to real values between

[0, 1] that add up to one. The output of this operation is vector z ∈ Rc

representing the probability distribution over the classes. To generate

z, the probability of the i-th class in z is calculated by:

zi = Pi(a
(last)) =

ea
(last)
i∑c

k=1 e
a
(last)
k

(2.9)

where a(last) ∈ Rc is the last layer output. The predicted label is finally

7



generated by an argmax operation over z to select the class with the

highest probability:

prediction = argmax(z) (2.10)

2.1.2 Training

The previous section describes the process of forward propagation wherein

each layer’s output is dependent on the parameters and outputs of the previ-

ous layers. In this section, we detail how MLPs are trained via the process of

backward propagation (backpropagation) [10] and how the network’s param-

eters are optimized.

Objective Function. The goal of neural networks is to learn the values of

parameters (θ) that minimize the network’s loss (error). The loss function

(objective function ) varies according to the task. Two of the most commonly

used functions are:

1. Least-squares cost : This approach is used in linear regression problems,

where the system’s predictions are real values. The cost for the training

instance (xi, yi) is calculated by:

J(θ;xi, yi) =
1

2
(hθ(xi)− yi)2 (2.11)

where hθ(xi) is the network’s prediction for xi using parameters θ and

yi is the gold label.

2. Cross-entropy : It is widely-used in classification tasks where the net-

work’s output is a probability distribution over the classes and the final

prediction is the class with the highest probability. In order to compute

the loss function, the network calculates the negative log-likelihood of

8



the gold labels given the network’s predicted probability distribution:

J(θ;xi, yi) = −
c∑
i=1

Q(yi)logPθ(yi) (2.12)

where c is the number of classes in the system, Q(yi) ∈ {0, 1} is the

ground-truth probability of the i-th class and P (yi) is the network’s

predicted probability of this class.

Optimization. Equations 2.11 and 2.12 calculate the cost at the last layer

in the network. In order to calculate the errors at previous layers, a back-

propagation algorithm is implemented:

δj = ((θ(j))T · δ(j+1)) · ∗g′(j) (2.13)

where δj is the error at layer j, ·∗ is an element-wise multiplication, g′(j) is the

derivative of function g from Equation 2.5 and δ of the last layer is calculated

by ∂
∂θ
J(θ;x, y) which is the partial derivative of J(θ) from Equations 2.11 or

2.12.

From Equation 2.13, it is obvious that the error at any layer is dependent

on the error of the next one, hence the errors backpropagate through the net-

work’s layers. The next step is to minimize the overall network error. One of

the commonly used algorithms to achieve this is Stochastic Gradient Descent

(SGD). This algorithm iterates over the input examples and updates (fine-

tunes) the network’s parameters θ w.r.t the processed example as follows.

First, θ is initialized randomly. Second, the network is fed the first training

example (x1, y1) and it predicts hθ(x1) via a feedforward process. The error

at each layer is calculated and backpropagated to the previous one. The

role of SGD is to calculate the derivatives (gradients) of the different layers’

errors and use the results to update θ according to a predefined step-size

known as the learning rate. The network is then fed the second example

and the whole process is repeated for each training instance. Processing all

the instances indicates one iteration of training. The training proceeds for a

9



certain number of iterations (epochs); at each iteration the network’s cost is

further minimized. The gradients are estimated by:

∂

∂θ(j)
J(θ) = (a(j))T · δ(j+1) (2.14)

where a(j) is calculated by Equation 2.5. The parameters are then updated

according to:

θ(j) := θ(j) − α ∂

∂θ(j)
J(θ) (2.15)

where α is a hyperparameter representing the learning rate.

Preventing Overfitting. As mentioned before, the more the network is

trained the more its loss is minimized. This might result in an overfitting

(high variance) problem wherein the trainable parameters highly fit the train-

ing set yet fail to generalize over new unattested examples. To remedy this,

various approaches could be implemented, we discuss a few here:

• Regularization: It is a way to penalize the network’s parameters. Adding

a regularization (weight decay) term to cost calculations lowers the per-

formance on the training set, yet makes the model more generalizable.

There are different methods for regularization including L1, L2 and

dropout [11]. In this paper, we focus on the second type. L2 regulariza-

tion discourages large weights by applying a quadratic penalty to the

network’s parameters. The loss function is modified to:

J(θ) := J(θ) + λ
∑
i

θ2
i (2.16)

where λ is a hyperparameter representing the regularization rate (a

larger rate indicates a larger penalty).

• Early stopping [12]: A common way to avoid overfitting is to divide

the training data into a training set and a development (dev) one.

After each iteration (or a few iterations) of training on the training set,

the network is tested on the dev set. The training and dev costs are

10



observed. Ideally, both the training and dev costs should decline until a

certain number of iterations. After that, the training cost will continue

decreasing yet the dev cost will start increasing. Training should stop

at this optimal point.

• Training on more data: Networks trained on small datasets are more

prone to overfitting. Conversely, training on more data makes it harder

for the model to overfit. The rationale behind this is intuitive; with a

few number of input instances, it is easier for the network to find the

parameters that perfectly fit these examples. However, adding more

instances makes the problem of searching for these parameters more

difficult.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) [13], [14] are a special type of feed-

forward neural networks. They have been successfully used in various com-

putational tasks including image recognition [15], [16], [17], video detection

[18], [19] and text categorization [20], [21], [22]. The input data of a CNN

is a multi-dimensional matrix (tensor) that represents various data types in-

cluding images, videos or texts. The core mathematical operation evaluated

by a CNN is a linear convolutional function. The convolutional layers are fol-

lowed by pooling layers in most of the network architectures. Figure 2.1 is a

graphical depiction for a full network architecture. The following subsections

provide a detailed description for CNNs.

2.2.1 Convolutions

Convolutional layers perform the key operation in CNNs. This operation

includes 3 essential tensors: input x ∈ Rm×n, filter (kernel) w ∈ Rh×l, where

h ≤ m and l ≤ n and output (feature map) k ∈ Rm−h+1×n−l+1. This is a

simple case of 2D tensors, for instance the input can be a 2D image where

11



Figure 2.1: Convolutional Neural Network architecture. Figure is from
http://deeplearning.net/tutorial/lenet.html.

each pixel has a singular value. Higher order of magnitude tensors can also

be applied. For example, 3D tensors could be used with images to represent

pixel RGB values. In the case of text inputs, the additional dimensions could

indicate different representations for words. Traditionally, the higher input

dimensions are known as channels (from RGB channels). Filters can also

have multiple dimensions to create numerous feature maps.

A filter is simply a weight tensor. The idea behind how filters are applied

is simple (see Figure 2.2). The filter w ∈ Rh×l convolves around the input

x ∈ Rm×n and at each location, an element-wise multiplication between w

and a window of size h × l in the input is applied. The elements of the

resulting matrix are summed up to form a new feature ki,j:

ki,j = w · ∗ xi:i+h,j:j+l (2.17)

Applying the filter on various positions in the input creates a feature map k

of the different detected ki,j features:

k = [k1,1, . . . , k1,n−l+1; . . . ; km,1, . . . , km−h+1,n−l+1] (2.18)

In the above equations, the filter shifts vertically and horizontally in the

input image. However, it is possible for it to move in one direction which

is common in Natural Language Processing (NLP) tasks. Furthermore, the

equations demonstrate the simple case of applying a 2D filter. Nevertheless,

a 3D filter w ∈ Rh×l×d would produce d feature maps, hence the dimensions
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Figure 2.2: Convolutional operation.

of k become Rm−h+1×n−l+1×d, where d is a hyperparameter.

The convolving filter works as a feature detector that extracts local features

as it is applied to local windows in the input. For instance, in image recogni-

tion, the filters can detect shapes or objects at different locations in an image.

In NLP, the filters can extract contextual information from sentence, word

or character sequences in the input text. Such information varies according

to the task. For instance, it could represent the sentiment of a window of

words in sentiment analysis or a detected error in this window in an essay

assessment task, as will be discussed in this paper.

So far, the network is a simple linear model that extracts local features

from the input data. In order to extract higher-level non-linear features, the

linear convolutional layer is interleaved with a non-linear activation function

(Equations 2.5 through 2.8). This function is applied element-wise to the

feature maps extracted earlier to produce local non-linear features.

13



2.2.2 Pooling

In CNNs, a pooling operation is traditionally applied to the feature maps

extracted by the convolutional layer. Pooling is an aggregation function

such as max, average, weighted average and L2 norm [8]; the most com-

monly used ones are max and average pooling [20]. Max pooling attempts to

highlight the important features by selecting the highest-value feature(s) in

each feature map, while average pooling averages these features. In general,

pooling is a way to extract global features from the local ones detected pre-

viously by the convolutional operation. There are various merits of pooling.

First, extracting the features of the highest values (max pooling) or averag-

ing them helps keep the salient information from the input and reduce the

possible noise. Second, pooling is a dimensionality reduction (subsampling)

mechanism which leads to more efficient computations, especially in deep

networks. It also creates a unified representation for all the variable-sized in-

put instances; therefore, the network’s prediction layer would receive inputs

of the same dimensionality. Finally, pooling achieves transitional invariance.

A feature map indicates the occurrence of a specific feature in the input.

By aggregating the values in this map, this feature is detected regardless of

where it appears in the input. This could be helpful in some tasks where

spatial invariance is required, while it is less efficient in others that are more

sensitive to feature order.

2.2.3 Fully Connected

As discussed before, the convolutional neurons are locally connected to cer-

tain regions in the input which creates a sparsely connected network [8]. This

is different from the traditional feedforward neural architectures, where each

input neuron is connected to each output neuron (Section 2.1). This full

connection is achieved at the final layer in CNNs where the output of the

last pooling operation is fully connected to the prediction layer. The output

layer could perform linear regression or softmax operations based on the task

(Section 2.1.1).
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2.2.4 Convolutional Premises

In this section, we present some of the core concepts associated with CNNs.

Wide and narrow convolutions indicate the kernel’s behaviour around

the boundaries of the input instances. In Figure 2.2, the input value x11

gets only multiplied by w11 in the convolving filter. This is a case of nar-

row convolution (valid convolution [8]). One of the disadvantages of narrow

convolutions is that the filter size has to be smaller than the input size. To

remedy this, wide (full) convolutions are applied [22]. In this model, the

input is padded with enough zero vectors to multiply each xi value in the

input tensor with all the values in the w filter. As a result, the input val-

ues near the boundaries are given equal attention as the rest of the values.

Additionally, the kernel size becomes independent of the input size. Figure

2.3 illustrates the two convolution types. There is a third type of convolu-

tion that lies between the aforementioned two types, wherein zero-padding

is added only when necessary [8]. For instance, padding vectors can only be

added if the input tensor is smaller than the filter to make them of equal

size. Another case is to unify the input instances’ size by padding them to

be of the same size as the largest instance amongst them.

Figure 2.3: The diagram on the left represents a wide convolution while the
one on the right represents a narrow one. Filter size = 3 is used in both.

Stride size represents how much the filter shifts at every step. For in-

stance, in image processing, a stride of size 1 indicates a filter shift by one
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pixel at a time2. Similarly, size 2 indicates that the filter skips one pixel in

every shift. Figure 2.4 is an illustration for stride sizes.

Figure 2.4: The diagram on the left represents a stride of size 1 and the one
on the right represents stride of size 2.

Weight sharing. As mentioned earlier, full connectedness in neural net-

works means that all the input neurons are connected to all the output ones.

This implies that each transition from an input to an output neuron requires

a different weight parameter. Hence, high-dimensional input tensors and

large hidden units would require maintaining high-dimensional weight pa-

rameters which is computationally expensive. CNNs remedy this by its local

connectivity. In a CNN, the weight tensor is shared between all the input

regions (by convolving over them) which dramatically reduces the number of

trainable parameters in the network.

2.3 Word Embeddings

An inherent question that is always posed when addressing NLP tasks is

how the input words should be represented. Vector representations of words

are widely-used as the input format for many machine learning models, in-

cluding neural networks. In the literature, these vectors are traditionally

distributed in a semantic space (word embedding space) where the semantic

regularities of words are captured. Such models are known as distributional

semantic models (DSM) [23], [24], [25]. They represent each word by a vector

that embeds its co-occurrence with neighbouring words. DSMs are spurred

by the notion that “Words which are similar in meaning occur in similar

2All the previous equations assume the stride size is 1.
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contexts.”[26]. For instance, words like “football” and “soccer” are expected

to have similar vectors in the embedding space as they appear in similar con-

texts. The similarity between two vectors a and b is traditionally measured

by their cosine similarity [27], [28], [29]:

sim(a, b) = cos(θ) =
a · b
‖a‖ . ‖b‖

(2.19)

where θ is the angle between the two vectors.

There are various ways to construct the continuous word space. Neural lan-

guage models have attracted much attention as efficient methods for creating

the embedding space. Various neural architectures have been proposed for

this task such as Feedforward Neural Net Language Models (NNLM) [30],

Recurrent Neural Net Language Models (RNNLM) [31], [32] and word2vec

models: Continuous Bag-of-Words (CBOW) and Continuous Skip-gram [33].

Training these models on large corpora (such as Google News or Wikipedea)

generates “pre-trained” word representations that can be leveraged in various

NLP tasks [34], [35], [36].

2.4 Character Embeddings

Recently, several NLP problems have exploited character-based representa-

tions for words [37], [38], [39], [40]. The idea behind character embeddings

is to create vector representations for characters and represent the words by

combining their character vectors. Representing the words using this tech-

nique is a way to capture their morphological forms that word-embeddings

fail to capture. For instance, with character representations, words like

“eventful”, “eventfully”, “uneventful” and “uneventfully” should have em-

beddings structured in a related way in the semantic space [37]. Build-

ing character embeddings can be achieved by different approaches including

CNNs [37], [38], [39] and Recursive Neural Networks [40].
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Chapter 3

Related Work

The work described herein is related to two areas of NLP research. In this

section we discuss some of the work accomplished in these areas.

3.1 Automated Essay Assessment

There are various attempts in the literature to build automated systems for

essay evaluation by modelling a few of the essay grading criteria. Some of

these systems aim at evaluating writing coherence. Miltsakaki and Kukich [5]

applied the concept of rough shifts in the Centering Theory1 [41] to measure

the “incoherence” of student essays. Their method relied on manual anno-

tations of coreferential expressions and transition types for centres. Another

attempt to evaluate essays by modelling coherence was by Burstein et al. [42]

using entity-grids2 [43] integrated with other “quality writing features” such

as spelling checks. Somasundaran et al. [44] leveraged lexical chains to as-

sess essay coherence, by building chains of semantically-related words, from

1In the Centering Theory, entities are the centres of attention in text and the transition
types between them are indicators for text coherence. A rough shift indicates an abrupt
transition in topic which is a sign of text incoherence.

2Entity-grids is an approach that models the distribution of entity transitions through-
out the text.
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WordNet, throughout the text and using their properties to train a gradient

boosting regressor to evaluate new ungraded essays.

Numerous AEA systems operate by exploiting grammatical and lexical fea-

tures in the essays. The Project Essay Grade (PEG) [4] is one of the earliest

AEA systems that relied on manually extracted surface textual features that

are used as “proxies” for the quality of writing. Such features included essay

length, counts of different Part-of-Speech (POS) tags and word length. An-

other system is e-Rater [1] that represented the essays as vectors of weighted

features related to grammar, style, vocabulary usage, lexical complexity and

discourse properties. New unmarked essays are evaluated based on the cosine

similarity between their vectors and the ones of the training essays. Intelli-

gent Essay Assessor (IEA) [2] applied Latent Semantic Analysis (LSA) [45]

and Singular Value Decomposition (SVD) to represent essays as 2D matrices

indicating the relationships between words and their contexts. The evalua-

tion of test essays is accomplished by computing the cosine similarity between

the test document matrix and the training ones and assigning the test essay

the grade of the most similar training essay. In addition to matrix similar-

ity, IEA leverage other text properties representing style and grammar. The

Bayesian Essay Test Scoring sYstem (BETSY) [3] used shallow textual fea-

tures such as sentence length, word unigrams and bigrams and the number

of verbs and verb arguments. It applied Naive Bayes classifiers to categorize

the essays into different classes (such as pass or fail).

Yannakoudakis et al. [6] addressed AEA as a rank preference problem and

trained SVMs to accomplish the ranking task and discriminate between the

essays based on writing quality. Their system relied on a wide-variety of lex-

ical and grammatical features. For the lexical features, they used word uni-

grams and bigrams. For the grammatical ones, they used: (1) POS unigrams,

bigrams and trigrams, (2) phrase structure rules generated from the sentence

parse trees to encode the grammatical constructions in essays, which helps

detect long-distance syntactic errors, and (3) grammatical relation (GR) fea-

tures by calculating the distance between heads and dependents in GRs as a

way to capture the “grammatical sophistication” in essays. Additional fea-
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tures were used such as script length and error-rate. Error-rate was estimated

by building a language model from the trigrams extracted from ukWaC cor-

pus [46] plus trigrams from the highly-scoring scripts in the CLC. A trigram

encountered in a test essay that is not found in this model is considered an

error. Yannakoudakis et al. composed the FCE dataset of CLC exam scripts

to evaluate their system (a detailed description of the dataset is provided in

Section 5.1). They achieved the state-of-the-art results on this dataset with

high correlations with the human graders. In this work, we use their dataset

and implement CNN models to address the task.

3.2 Convolutional Neural Networks for NLP

Word convolutions. One of the earliest CNN implementations for text

classification were the models by Collobert et al. [20]. They applied two con-

volutional approaches: a window approach for POS tagging, chunking and

Named-Entity Recognition and a sentence one for semantic role labelling.

The core difference between the two approaches is the absence of pooling

in the window approach. Inspired by Collobert et al.’s sentence approach,

Kim [21] implemented a CNN that was generalizable for numerous tasks in-

cluding sentiment analysis, question type classification and opinion polarity

detection. They applied three different convolutional filter sizes and aggre-

gated their outputs with max-pooling. Kalchbrenner et al. [22] constructed

a deeper network with two convolutional and two max-pooling layers and a

folding layer (performs element-wise summation) after the first pooling layer.

They applied their architecture to sentiment and question type classification

problems.

Character convolutions. Character convolution is a new area of research

in NLP. The following are a few attempts in that area. Santos and Zadrozny

[38] built a deep CNN that exploits character-level and word-level represen-

tations to perform POS tagging. Inspired by their work, dos Santos and
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Gatti [47] incorporated character embeddings with distributed word repre-

sentations to analyse tweets’ sentiments. Other research has attempted to

leverage only character representations with no recourse to word embeddings.

Kim et al. [37] proposed a network that only relies on character-level repre-

sentations to build language models for different languages. They concluded

that the character model is particularly efficient with morphologically rich

languages. Zhang et al. [39] implemented a convolutional character model

for text classification of various datasets. All the aforementioned character

models build word representation by convolving over the characters in the

word then apply a max-pooling operation to generate fixed-size word vectors.
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Chapter 4

Design and Implementation

In this work, we implement three convolutional models. We describe the

features exploited by these models in the first part of this chapter. In the

second part, we detail the models’ architectures.

4.1 Features

4.1.1 Word Embeddings

All the models described herein, leverage word vector representations in se-

mantic spaces as their input. We initialize the networks with the pre-trained

word2vec Skip-gram model trained on Google News articles [36]. This corpus

contains around 100 billion words with 3 million unique words and phrases.

In this pre-trained model, the words are represented as 300-dimensional vec-

tors. The motivation behind using a model that was trained earlier on a

large corpus is to initialize the network with contextually rich word repre-

sentations, hence help mitigate the effects of data sparsity.

The words that occur in the training set compose the model’s vocabulary V .

In V , each word has a unique index i, where 1 ≤ i ≤ |V |. The distributional

vector for each word in V is retrieved from the pre-trained model. As a
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result, an embedding matrix Ewrd ∈ R|V |×nwrd
is constructed, where nwrd is

the dimensionality of the pre-trained space (300 in our case). In matrix Ewrd,

the i-th row corresponds to the semantic vector of the word with index i in

V :

Ewrd =


embed1

...

embed|V |

 (4.1)

The words that are not found in the pre-trained embeddings are initialized

randomly with values drawn from a Gaussian distribution with mean = 0

and scale = 0.1.

4.1.2 Character Embeddings

The character embedding model is very similar to the word one. In this

feature model, vectors are constructed for the characters in a predefined set

C. We define C in our experiment as:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

0123456789‘ ∼!#$%∧&*()- =+,./;’[]\<>?:”{}|

To build the character embeddings, each character in C is randomly initial-

ized with an nchr-dimensional vector, similar to word vector initialization.

As a result, a matrix Echr ∈ R|C|×nchr
is composed, where the i-th row

corresponds to the vector representation of the i-th character in C. The sub-

sequent step is to build the word representation from its character vectors

as will be detailed in Section 4.2.2. Any characters not in C (e.g. foreign

letters) are assigned a single randomly initialized vector that represents un-

known characters.

The decision to exploit character representations as features is motivated by

their ability to:

• alleviate the effects of data sparsity and the out-of-vocabulary

words. In the word-embedding model, unknown words are initialized

randomly giving them unmeaningful positions in the semantic space.

24



However, using character embeddings regularizes this random process.

If words like “eventful”, “eventfully”, “uneventful” and “uneventfully”

are encountered for the first time in the test set, the character embed-

ding model should be able to represent them in a structured way and

to identify that the relation between the first and the second words is

similar to the relation between the third and the fourth.

• detect spelling errors. With sub-word information, the system can

learn that there are “prohibited” sequences of characters and recognize

them if they are encountered. For instance, words that end with “sh”

are pluralized, in case of nouns, or converted to the present tense,

in case of verbs, by adding the suffix “es”. Adding just an “s” is a

wrong suffix. By representing the words with their character vectors,

the model should be able to identify that words like “crash-es” and

“slash-es” are correctly spelled while “crash-s” and “slash-s” are not.

• capture grammatical errors. As mentioned earlier, the premise

behind our models is not to rely on hardcoded features or features gen-

erated by other systems such as POS tags. In essay grading, identifying

POS tags is beneficial as it helps detect grammatical errors. As charac-

ter models can identify the word morphemes, they can work as a proxy

for grammatical rules and hence, identify grammatical errors with no

recourse to POS taggers. For instance, the character model can detect

that the word “I ” followed by a verb ending with the suffix “es”, is

an unusual sequence. While this model is expected to be less accurate

than POS tags, it can still approximate some grammatical mistakes

that word embedding models cannot capture.
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4.2 Models

4.2.1 Document-level with Word Convolution (DWC)

The Document-level with Word Convolution (DWC) model processes the

input document as a flow of words with no account for sentence boundaries.

Figure 4.1 graphically illustrates the DWC architecture1. The only features

leveraged by this model are word embeddings. The following is a detailed

description of the model’s architecture:

Input Layer. The first layer in the model works as a projection layer

to retrieve the vector representations of the input words from the semantic

space. As mentioned before in Section 4.1, each word in the vocabulary V

has a unique index i and the word-embedding feature space is represented by

a matrix Ewrd ∈ R|V |×nwrd
, where nwrd is the embedding dimensionality. The

task of the input layer is twofold. First, it translates each input document

into a sequence of its word indices. Second, using this sequence, it performs

a lookup operation in matrix Ewrd to retrieve the semantic representations

of the document’s words. The output of the lookup operation is a document

embedding matrix M ∈ Rm×nwrd
, where m is the document length.

For instance, if the index sequence representing the document is {2, 14, 5, 60},
then:

M =


embed2

embed14

embed5

embed60

 (4.2)

Convolutional Layer. This layer is responsible for applying a linear con-

voluional operation over the input embeddings in order to extract local fea-

tures. The same equations from Section 2.2.1 are applied. However, in the

1This model is inspired by the implementation of Farag [48] in sentiment analysis,
which follows the model of Kim [21].
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Figure 4.1: Document-level with Word Convolution (DWC) model architec-
ture.

convolution discussed in 2.2.1, the filter moves in both directions. In this

task, it is more reasonable to shift the filter only vertically since the doc-

ument is expressed as a sequence of words (see Figure 4.1). Accordingly,

filter wwrd ∈ Rhwrd×nwrd
is applied sequentially to each position in the input

document [x1 , . . . , xm] producing a feature map kwrd ∈ Rm−hwrd+1, where:

kwrdi = wwrd · ∗xi:i+hwrd (4.3)

Subsequently, a non-linearity is applied element-wise to each value in the

feature map:

kwrdi := g(kwrdi + b) (4.4)

where b ∈ R is a bias term and g is a non-linear function. We test both the

ReLU and tanh functions, as will be discussed later in the experiment.

All the above equations demonstrate the simple case of generating one feature

map. In order to further enrich the extracted feature space and exploit the

merits of deep learning, a 3D filter is applied; hence, the dimensionality of
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wwrd becomes Rhwrd×nwrd×dwrd
and b becomes ∈ Rdwrd

, where dwrd is a hyper-

parameter representing the number of generated feature maps. As a result,

the dimensionality of the convolutional output kwrd becomes Rm−hwrd+1×dwrd
.

In all the models in our experiment, we apply a stride of size one, mean-

ing that the convolutional operation only shifts by one word. With this

stride size, overlapping filters are applied which helps extract richer contex-

tual information. Furthermore, the DWC model uses narrow convolutions.

The reason is that the filter tensor convolves around the whole document

and its size is much smaller than the document length. Additionally, wide

convolutions can be helpful in image detection in order to perform multiple

convolving operations over the image boundaries. However, in essay scoring,

document boundaries might not be as informative as image ones; thereby,

including them in one convolution should be sufficient.

Pooling Layer. The local features detected by the convolutional opera-

tion pass through a pooling layer in order to extract more global high-level

features as described in Section 2.2.2. Aggregating the values of each of the

dwrd feature maps results in a vector pwrd ∈ Rdwrd
. This is a way to highlight

the useful features generated from the convolutional layer and capture a more

high-level global context for the essay. In addition, as the input documents

are of variable lengths, pooling overcomes such discrepancies and produces

vectors of unified lengths for all the documents. In this model, both average

and max pooling are examined.

Fully Connected Layer. The final layer in the model is the fully-connected

prediction layer that outputs the estimated score of the essay. The input of

this layer is the pooled vector pwrd ∈ Rdwrd
and the output is a number rep-

resenting the score. We experiment the two approaches mentioned in Section

2.1.1: linear regression and classification. On one hand, using linear regres-

sion is straightforward, where the model predicts a real-valued score. On

the other hand, essay scoring can be casted as a classification task, where

40 labels representing the scores from 1 to 40 are defined. The output layer
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applies a softmax then argmax operations to the 40-dimensional vector that

represents the class probabilities (see Equations 2.9 and 2.10).

4.2.2 Document-level with Word and Character Con-

volutions (DWCC)

The Document-level with Word and Character Convolutions (DWCC) model

extends the aforementioned DWC model by augmenting it with character

convolutions. This section describes the character convolution component

(Figure 4.2) and how it is integrated with the DWC model (Figure 4.3).

Character Convolutions are very similar to word convolutions. The core

difference between the two methods is that character convolutions are applied

over the characters of each word, whereas word convolutions are applied over

the words of the whole document. The result of the character convolution

operation is a character vector representation for each word (as depicted in

the upper part of Figure 4.2). The steps for building these representations

are:

• Input Layer: As discussed in Section 4.1.2, the character embedding

space Echr ∈ R|C|×nchr
is constructed by randomly initializing each

character ∈ C with an nchr-dimensional vector. Similar to the input

layer in DWC, the task of the input layer in the DWCC model is to

retrieve the character embeddings for each word in the input essays.

To achieve that, each input word is tokenized into its sequence of char-

acters which is translated to a sequence of indices [c1, . . . , cqi ], where

qi is the length of this word. These indices are used to perform a

lookup operation in matrix Echr to retrieve the character embedding

representation for each word Ni ∈ Rqi×nchr
.

• Padding: In order to handle the discrepancies in word lengths, padding

vectors are added to each word. Padding is simply adding nchr-dimensional

zero vectors to the top and bottom of the embedding Ni to make its
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Figure 4.2: Character Convolutions for the Document-level with Word and
Character Convolutions (DWCC) model.

dimensionality equal to the one of the longest word’s embedding. Let

the longest word in the document be of length qlong, and the processed

word is of length qi, padding is done as follows: embedding Ni for this

word is top-padded with Pt ∈ R(qlong−qi)/2×nchr
and, likewise, bottom-

padded with Pb ∈ R(qlong−qi)/2×nchr
(if qlong − qi is an odd number then

one padding side will be a row larger than the other). As a result,

each i word in the same document will have a character-based embed-

ding Ni ∈ Rqlong×nchr
. Unifying the size of character representations

for words is computationally more efficient than using variable-sized

representations.

• Masking: As character embeddings are fine-tuned via backpropagation,

padding sub-tensors will be fine-tuned as well, which produces noise in
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the data. To remedy this, a masking operation is performed over the

embeddingsN to keep all the padding vectors zero-valued and only fine-

tune the actual characters in words. Masking is simply an element-wise

multiplication of N ∈ Rqlong×nchr
and a mask ∈ Rqlong×nchr

with zero

values opposite to the padding vectors and ones elsewhere.

• Convolutional Layer: A convolutional operation is applied to the masked

embeddings. Similar to the DWC model, a convolving filter wchr ∈
Rhchr×nchr×dchr is applied to every character position in every word to

extract dchr feature maps, where dchr is a hyperparameter. A non-

linearity is then applied to the generated local character feature maps

kchr ∈ Rqlong−hchr+1×dchr . One of the main differences between character

convolutions and the word ones applied in the DWC is padding. In the

DWC, there is no padding; therefore, narrow convolutions are applied.

In the character model, padding is added, but only to unify the word

lengths to the longest word. This means that in the long words narrow

convolution is applied while in the short ones, the convolution is wide;

hence, the convolution here is in between the two types (Section 2.2.4).

This should not affect the results due to the masking operation.

• Pooling Layer: Pooling is applied to character feature maps with the

same approach as word maps in DWC. The output of this operation for

each word is a pooled vector pchr ∈ Rdchr representing the character-

based representation of this word. Since padding is applied, the feature

maps would contain zero vectors, which makes average pooling inac-

curate, specially for short words. Therefore, max pooling is a more

effective technique in this model since the max feature is guaranteed

to be of a positive value after applying a ReLU activation function.

Word Convolutions with Character Embeddings (WCCE). This

component of the model is similar to the word convolution component in

DWC (see Figure 4.1), yet the embeddings for the input words are the es-

timated character-based representations (pchr ∈ Rdchr), instead of the pre-

trained word vectors. The previously described character convolutions can
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Figure 4.3: Document-level with Word and Character Convolutions (DWCC)
model architecture.

be viewed as a component that initializes word representations based on word

morphological forms. The input document is translated into a sequence of

this new representation and the same operations in Section 4.2.1 are applied.

The lower part of Figure 4.2 illustrates the WCCE component. We assign the

parameters in this component a wdch superscript as it convolves over words

represented based on their characters. This component uses a weight filter

w ∈ Rhwdch×nwdch×dwdch
to produce feature maps kwdch ∈ Rm−hwdch+1×dwdch

,

where m is the document length. The pooling operation is then applied to

produce the pooled vector pwdch ∈ Rdwdch
.

Integration with Word Convolutions and Fully Connected Layer.

Figure 4.3 depicts the integration of both the word convolution component

(from the DWC model, see Figure 4.1) and the WCCE one. The outputs of

the two components are the pooled vectors pwrd ∈ Rdwrd
and pwdch ∈ Rdwdch

respectively. The integration part is simply concatenating the two vectors

which results in pwrd/wdch ∈ Rdwrd+dwdch
. Linear regression is then applied

to pwrd/wdch in order to predict the score. With this implementation, both

character and word representations are used for prediction.

32



4.2.3 Sentence-level with Word and Sentence Convo-

lutions (SWSC)

Sentence-level with Word and Sentence Convolutions (SWSC) employs a

deeper neural network than the aforementioned two models. This model

is closer to image detection algorithms by leveraging the compositionality

feature of deep convolutional networks. In image detection, the early filters

in the network could detect edges from raw input pixels. Subsequent filters

could use these edges to detect shapes and further filters could identify ob-

jects in the image from these shapes. In NLP, a document could be viewed

the same way as an image. It consists of words that are grouped together

to form the sentences that eventually compose the whole document. This

could be helpful in the task of essay assessment as a human grader evalu-

ates the composition of each sentence individually and the whole structure

of the document as a group of sentences. The SWSC is inspired by this

premise of compositionality. It consists of two convolutions each one is fol-

lowed by a pooling layer. The first convolution applies feature detectors

(filters) to the raw vector representations of the words in each sentence to

extract intermediate-level features that are aggregated by a pooling opera-

tion. Accordingly, each pooled feature vector is a representation for each

sentence in the essay. In the second convolution, the filters convolve over the

sentence representations to detect high-level features followed by a second

pooling operation. The last aggregated vector is a representation for the

whole document and thereby, used for the final scoring. Figure 4.4 shows the

detailed architecture of the model. The main system components are:

Input Layer. The model’s input is the same word embeddings used in the

DWC system. The main difference is that instead of feeding the system a

sequence of all the words in the document, the input is a sequence of words

in each sentence. In the SWSC model, each sentence is translated into a

sequence of word indices used to retrieve their embeddings, hence creating

the sentence embedding.
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Padding. Each sentence embedding is padded, using the same technique

in Section 4.2.2, to make the length of all the sentences in the same document

equal to the length of the longest sentence in this document. As a result,

each sentence is represented as an embedding matrix ∈ Rllong×nwrd
where llong

is the length of the longest sentence and nwrd is the word embedding size.

Accordingly, the whole document is represented as a tensor ∈ Rllong×nwrd×s,

where s is the number of sentences in the document. Padding is particu-

larly helpful with short sentences to enable selecting convolutional filter sizes

irrespective of the sentence length.

Masking. Similar to the masking technique applied in Section 4.2.2, each

sentence embedding is masked to exclude the padding vectors from the fine-

tuning process.

First Convolution and Pooling. The same convolutional methods ap-

plied in the other models are applied here to the words in each sentence,

without crossing sentence boundaries. The model convolves a filter wwrd ∈
Rhwrd×nwrd×dwrd

to generate s sets of feature maps kwrd ∈ Rm−hwdch+1×dwdch
,

or in another notation, generate feature maps kwrd ∈ Rm−hwdch+1×dwdch×s. A

max pooling operation is then applied to produce s pooled vectors pwrd ∈
Rdwrd

(or a matrix pwrd ∈ Rdwrd×s). The choice of max pooling here is for the

same reasons as mentioned in Section 4.2.2 for character convolutions.

Second Convolution and Pooling. The output of the first convolution

and pooling is a vector for each sentence highlighting its most prominent fea-

tures. In order to construct a higher representation for the whole document,

a second convolution is applied to pwrd ∈ Rdwrd×s. This convolution uses a

filter wsent ∈ Rhsent×dwrd×dsent
, where hsent is a hyperparameter representing

the sentence filter height, dwrd is the number of feature maps, per sentence,

from the first convolution (filter width), and dsent is a hyperparameter repre-

senting the number of feature maps to be extracted by this convolution. The

output is a second set of dsent feature maps of size ∈ Rs−hsent+1. A second

34



Figure 4.4: Sentence-level with Word and Sentence Convolutions (SWSC)
model architecture.

pooling operation is then applied to extract global features for the whole

document in a vector psent ∈ Rdsent
.

Fully Connected Layer. The prediction layer is the same as the one in

the previous two models. Linear regression is applied to the output of the

second pooling operation to generate the predicted score.
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Chapter 5

Evaluation

5.1 Datasets

We evaluate our essay scoring system using two datasets extracted from the

Cambridge Learner Corpus (CLC). This corpus consists of exam scripts from

Cambridge Assessment’s English as a Second or Other Language (ESOL)

examinations. The scripts were written by English language learners from

all around the world. The CLC is a collaborative project between Cam-

bridge University Press and Cambridge Assessment [6]. The extraction of

the datasets from the CLC is achieved as follows:

Public First Certificate in English (FCE) Dataset. Yannakoudakis

et al. [6] compiled the public First Certificate in English (FCE) dataset1

from exam scripts written by learners of upper or intermediate levels. This

dataset consists of a total of 1,238 scripts, 1,141 scripts from the year 2000

for training and 97 scripts from the year 2001 for testing. The scripts in each

set are written by distinct learners and represented in XML format. Each

script contains two answers to two different prompts asking the learner to

write either an article, a letter, a report, a composition or a short story. A

1http://ilexir.co.uk/applications/clc-fce-dataset/
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Figure 5.1: Distribution of the public FCE dataset. The x axes represent the
scores and the y axes represent the number of essays graded with this score.
Mean and standard deviation (std) values are illustrated.

script is annotated with an overall score for the two answers; the range of the

scores are from 1 to 40. Additionally, scripts contain meta-data about the

learners’ native language and age. The script answers are annotated with 80

types of linguistic errors [49]. For example, a spelling error is encoded as:

In our <e type=“S”><i>Acadamy</i><c>Academy</c></e>

we are not allowed to smoke.

where <i> is the detected error and <c> is its suggested correction. We

do not use these annotations for training; they are only used in the error

analysis as will be discussed later in this chapter.

We divide the training data randomly into 1,061 scripts for training and 80

scripts as a dev set. The distribution of the scores in the training and dev

sets is illustrated in Figure 5.1, where the mean score is around 27, which is

normal among upper-intermediate level exam takers.

Full First Certificate in English (FCE) Dataset. It is an extended

version of the public FCE; it contains the same scripts from the public FCE
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Figure 5.2: Distribution of the full FCE dataset. The x axes represent the
scores and the y axes represent the number of essays graded with this score.
Mean and standard deviation (std) values are illustrated.

plus additional ones, following the same format. This dataset is not published

yet. It has a total of 11,900 scripts. We remove all the scripts with invalid

scores which lowers the number of scripts to 9,804. The dataset is randomly

divided into 8,824 scripts for training and 980 for the dev set. The full FCE

shares the same test set with the public FCE. The distribution of the training

and dev sets is depicted in Figure 5.2. The following table is a summarization

of the datasets:

Dataset Training Dev Test
Public FCE 1,061 80

97
Full FCE 9,804 980

Table 5.1: Summarization of the datasets.

39



5.2 Data Preprocessing

Prior to retrieving the vector representations of the words in the scripts, the

following data preprocessing is applied:

Merging answers. As the grade assigned to a certain script includes its

two answers, these answers are concatenated as one training instance with

an end of answer tag inserted at the end of each answer. In an initial exper-

iment, we evaluated the task using the two answers as two different instances

assigned the same score, but the merging technique yielded better results.

Tokenization. The documents are split on white spaces and punctuation

marks (standard tokenization) using the Robust Accurate Statistical Parsing

(RASP) system [50].

Unknown words. One of the main issues in NLP algorithms is handling

the unknown words. The system’s vocabulary V is naturally extracted from

the training set, which is problematic when a word out of this vocabulary is

encountered. For this reason, we replace all the words that occur only once

in the training set with <UNK> tag. Accordingly, there will be a single vec-

tor representation for these words. This solves the out-of-vocabulary words

problem as these words are initialized with <UNK> as well. The system

views the <UNK> words as rare words that can be grouped together. It is

hard for the system to learn features from a word that occurs only once.

5.3 Evaluation Metrics

We use three evaluation metrics to measure the models’ performance:

• Root mean square error (RMSE): It measures the standard deviation

of the differences between the predicted scores and the ground-truth
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ones. Therefore, it gives a quantitative measure for the performance.

The lower the RMSE is, the more accurate the predictions are. RMSE

is computed by:

RMSE =

√∑n
i=1(h(xi)− y(xi))2

n
(5.1)

where h(xi) is the system’s prediction for the i-th document, y(xi) is

the true score for this document and n is the number of test instances.

• Pearson’s product-moment correlation coefficient : It is also referred to

as Pearson’s correlation and denoted by (r). It measures the strength

of linear dependence between two variables. In our case, the variables

are the predicted scores h(xi) and the gold ones y(xi), both with size

n. Pearson’s correlation is estimated by:

r =

∑n
i=1(h(xi)− µh)(y(xi)− µy)√∑n

i=1(h(xi)− µh)2
√∑n

i=1(y(xi)− µy)2
(5.2)

where: µh =
1

n

n∑
i=1

h(xi)

and analogously: µy =
1

n

n∑
i=1

y(xi)

The value of r ∈ [−1, 1]. r = 1 means there is a total positive corre-

lation, r = 0 means there is no correlation and r = −1 means there is

a total negative correlation. Basically, Pearson’s coefficient attempts

to fit the data points (hi, yi) to a single line; thereby, it is sensitive to

outlier points. The higher r is the more accurate the predictions are.

• Spearman’s rank correlation coefficient : It is also referred to as Spear-

man’s correlation and denoted by (ρ). It is the nonparametric version

of Pearson’s correlation; it measures the degree of association between

two ranked variables. Spearman’s correlation is only dependent on the

ordinal arrangement of the variables. Hence, unlike Pearson’s correla-

tion, it is not sensitive to outlier scores, which makes it a more reliable
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metric. In order to calculate Spearman’s correlation between h(xi) and

y(xi), a monotonic function is computed by first, ranking the two vari-

able sets to generate rank(h(xi)) and rank(y(xi)) respectively, then ρ

is estimated by:

ρ = 1− 6
∑n

i=1(rank(h(xi))− rank(y(xi)))
2

n(n2 − 1)
(5.3)

Accordingly, ρ = 1 means a total positive correlation, ρ = 0 means no

correlation and ρ = −1 means a total negative correlation. The higher

ρ is the more accurate the predictions are. Ranking ties are handled

by a midrank approach. For instance, if the values of a variable are

[0.1, 0.3, 0.3, 0.5] this would yield ranks [1, 2.5, 2.5, 4].

5.4 Other Models

We compare our approaches with two models:

5.4.1 Random Baseline

The idea behind the random baseline is to generate the mean scores that

would minimize the prediction error. We generate two sets of scores for

the two datasets (public and full FCE). The generation process for each set

works as follows. The scores for the test essays are generated randomly in the

range [µtrain−σtrain, µtrain +σtrain], where µtrain is the mean score and σtrain

is the standard deviation in the training set. The process is repeated 100

times, with different seeds, and each time the three evaluation metrics are

calculated using the generated scores and the gold ones. The final evaluation

values are the average of the values estimated in all the trials. This baseline

is to ensure that the CNN is actually learning useful features and not just

generating random results. From the mean and standard deviation values in

Figures 5.1 and 5.2, the baseline generates random scores in the range [22, 33]
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in case of the public FCE and [21, 34] in the full FCE.

5.4.2 Rank Preference SVMs

As described in Section 3.1, the state-of-the-art model for this task was im-

plemented by Yannakoudakis et al. [6] who used a rank preference SVM

with various lexical and grammatical features (detailed in Section 3.1 and

summarized in Table 5.13). We only compare our system to their Pearson’s

and Spearman’s correlations, since they were the only provided evaluation

metrics.

5.5 Experimental Setup

In this section, we describe the various experiments conducted using the three

models described in the previous chapter. In all the models, the network’s

parameters are initialized with values drawn randomly from a Gaussian dis-

tribution with mean = 0 and scale = 0.1. The initialized parameters include:

weights, biases, embeddings for the words not found in the pre-trained space,

character embeddings and word embeddings in the random initialization sce-

nario as will be discussed in the next subsection. The models are constructed

using Theano, a library that efficiently evaluates and optimizes mathemat-

ical expressions involving multi-dimensional arrays [51]. All the models are

trained using SGD with early stopping based on the dev sets. The calculated

objective function is least-squares cost in regression models and cross-entropy

in classification ones (see Section 2.1.2).
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Params Public FCE Full FCE
learning rate {0.0001, 0.001, 0.01, 0.1} {0.001, 0.0001}
word-embed

size
300 300

word filter size (hwrd) {2, 3, 5, 7} 3
# word feature maps

(dwrd)
{100, 200, 300, 400, 500} {100, 200, 300}

word pooling {avg, max} avg
L2 rate {0, 0.001, 0.0001} 0.0001

lowercase characters {yes, no} no
word initialization {pre-trained, random} pre-trained

prediction {regression, classification} regression
non-linearity {ReLU, tanh} ReLU
Fine-tuning {yes, no} yes
Stride size 1 1

Table 5.2: Hyperparameters and configurations of the DWC model, for both
the public and full FCE dev sets. The values in bold are the ones that
performed the best on dev sets, in case multiple values were examined.

5.5.1 Document-level with Word Convolution (DWC)

We implement the DWC model as described in Section 4.2.1. Different hy-

perparameters and network configurations2 are tested as revealed in Table

5.2; the best performing values are in bold in case multiple values were tried.

These values are tuned on the dev sets of both the public and full FCE

datasets. In one of the experiments, we cast the problem as a classification

task and compare it to regression on the public FCE dataset (Table 5.8).

On the same dataset, we explore the effect of lowercasing the words before

retrieving their embeddings (this is part of the preprocessing stage) and the

impact of using pre-trained embeddings vs. random vector initialization. Ad-

ditionally, we test average and max pooling operations and ReLU and tanh

activation functions. Moreover, we conduct an experiment to investigate the

effect of changing the convolving filter size (hwrd) on the performance.

The impact of fine-tuning the word embeddings and how this impact varies

relative to the filter size are examined by implementing two experimental

setups with each filter size (Table 5.5). The first setup fine-tunes the word

embeddings by including them in the network’s optimized parameters. In

2Network configurations are: pooling technique, lowercasing characters, word initial-
ization, prediction strategy, non-linearity and fine-tuning. For simplification we refer to
hyperparameters and configurations as “params” in tables.
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the second one, these embeddings are excluded from the trainable parame-

ters, hence functioning as static inputs. In the second setup, we perform a

slight change in the data preprocessing step; we retrieve the vectors from the

semantic space for all the words that appear in the training set, even if they

occur once. In addition, words that are absent from this space are randomly

initialized with unique vectors, regardless of their frequency in the training

set; we do not use the <UNK> technique. For the test set, words are initial-

ized from the training embedding space and if not found, they are initialized

from the the pre-trained space. If words are not found in both spaces, they

are initialized with unique random vectors. The rationale behind this change

is that since the words in this setting are not fine-tuned, they are only rep-

resented according to their positions in the pre-trained space. Fine-tuning

shifts the vector space to be more tailored for the task; hence, in the fine-

tuned setting the vector space, from which the test words should be retrieved,

is different from the pre-trained one. Nevertheless, in the static setting the

vector space is identical to the pre-trained one; thereby, test words can be

retrieved directly from the pre-trained space even if they were not seen before

in the training data3.

We tuned the hyperparameters by trying a few of the values commonly used

in the literature [52], [20], [21], [22], [47], [53]. For instance, for the number

of feature maps (dwrd), the commonly used range of values is [100−600] [52].

Accordingly, we start with a baseline size of 100 as it was used in similar

architectures [20], [21] and tune the other parameters with this size. We

later investigate the change in performance when using larger numbers of

feature maps (Table 5.7 and Figure 5.3(a)). The hyperparameter selection

in this model influences the initial selection of the hyperparameters in the

other two models. Table 5.11 depicts the results of the public and full FCE

dev sets and the final results on the test data are illustrated in Table 5.12.

3We tried using the <UNK> technique in the static space but, removing it yielded
better results.
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Params Public FCE Full FCE
learning rate {0.0001, 0.001, 0.01, 0.1} {0.001, 0.0001}

char-embed size {15, 20, 30, 50} 50
word-embed size 300 300

char filter size (hchr) {1, 3, 5} 1
word with char-embed

filter size (hwdch)
3 3

word filter size (hwrd) 3 3

# char feature maps (dchr) {50, 100, 300} {100, 300}
# word with char embed

feature maps (dwdch)
{50, 100, 300} 100

# word feature maps (dwrd) {100, 300} {100, 300}
char pooling (pchr) max max

word with-char embed
pooling (pwdch)

avg avg

word pooling (pwrd) avg avg
L2 rate {0, 0.0001} 0.0001

lower-case characters
in char embeddings

{yes, no} no

word initialization pre-trained pre-trained
prediction regression regression

non-linearity ReLU ReLU
Fine-tuning yes yes
Stride size 1 1

Table 5.3: Hyperparameters and configurations of the DWCC model, for
both the public and full FCE dev sets. The values in bold are the ones that
performed the best on dev sets, in case multiple values were examined.

5.5.2 Document-level with Word and Character Con-

volutions (DWCC)

We implement the DWCC model as described in Section 4.2.2. The exam-

ination of hyperparameters is depicted in Table 5.3. The hyperparameters’

initialization is guided by the values used in the literature as well as the

results from the DWC model. For instance, for the character convolutional

filter size (hchr), 3 and 5 were of the most commonly used values [38], [37],

[54], [39]. Similar to the DWC experiment, two DWCC models are created

for the two datasets (see Table 5.11 for the results on the dev sets) and tested

on the test set (see Table 5.12).
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Params Public FCE Full FCE
learning rate {0.0001, 0.001} 0.0001
word-embed

size
300 300

word filter size (hwrd) 3 3
sentence filter size (hsent) {1, 2, 3, 4} 2

# word feature maps
(dwrd)

{100, 200} 100

# sentence feature maps
(dsent)

{100, 200, 300} {100, 200}

word pooling (pwrd) max max
sentence pooling (psent) avg avg

L2 rate 0.0001 0.0001
lower-case characters no no

word initialization pre-trained pre-trained
prediction regression regression

non-linearity ReLU ReLU
Fine-tuning yes yes
Stride size 1 1

Table 5.4: Hyperparameters and configurations of the SWSC model, for
both the public and full FCE dev sets. The values in bold are the ones that
performed the best on dev sets, in case multiple values were examined.

5.5.3 Sentence-level with Word and Sentence Convo-

lutions (SWSC)

We implement the SWSC model as described in Section 4.2.3. This model

has a special addition in the data preprocessing stage. Since it relies on

sentences, sentence boundary detection is required. For this purpose, we use

the standard sentence boundary detection by the RASP system and mark

all the boundaries with a special sentence end tag. This way, the model can

process each sentence separately.

The hyperparameter tuning on the dev sets is detailed in Table 5.4. Sentence

filters (hsent) of sizes [1, 4] are tested and the results are revealed in Table 5.6.

As the performance decreased when increasing the filter size, we did not try

larger sizes, which was an intuitive decision as well. Similar to the previous

experiments, two SWSC models are built for the two datasets (see Table 5.11

for the results on the dev sets) and tested on the test set (see Table 5.12).
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5.6 Results and Discussion

A summarization of the final models’ results is depicted in Tables 5.11 and

5.12. The following subsections provide a detailed discussion about the mod-

els’ performance.

5.6.1 Hyperparameters

Word Filter Size. As depicted in Table 5.5, the best filter size in the

DWC model is 3; hence, this size is applied to other models. Using filter

size 3 puts each word in the context of its previous and next words. For

the task of essay scoring, defining each word in this context was enough to

make the most accurate predictions by the model. Another rationale behind

the efficiency of this size is that many writing errors occur in a window of

three words, including spelling errors, word ordering, verb agreement (in

short-distance dependency case) and replacement errors. A filter of size 3

might fail to capture long-distance dependency errors; however, it is still more

accurate than larger filters. Table 5.5 also shows that fine-tuning improves

the performance for all filter sizes, rather than using static embeddings (more

analysis about fine-tuning is discussed in the next section). Additionally, an

interesting observation in this table is that the impact of fine-tuning becomes

less noticeable when increasing the filter size. For instance, the difference in

the RMSE between the fine-tuned and the static models with filter size 2 is

0.33, this difference decreases gradually with increasing the filter size until

it reaches 0.12 with size 7. The intuitive explanation for the relationship

between the filter size and the impact of fine-tuning is that with bigger filters,

words are defined in larger contexts; therefore, the influence of fine-tuning

becomes less obvious4.

Sentence Filter Size. Table 5.6 illustrates the impact of changing the

sentence filter size (hsent) in the SWSC model when testing on the public

4This analysis is inspired by Farag [48].
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Filter size 2 3 5 7
Fine-tuning yes no yes no yes no yes no

RMSE 4.75 5.08 4.74 4.95 4.81 5.01 4.88 5.00
r 0.57 0.47 0.58 0.51 0.57 0.49 0.55 0.49
ρ 0.57 0.49 0.59 0.51 0.57 0.48 0.55 0.47

Table 5.5: Results of using different filter sizes and the effect of fine-tuning
in the DWC model on the dev set of the public FCE dataset. Feature map
size 100 is used and the other hyperparameters/configurations are the best
values from Table 5.2.

Evaluation
sentence filter size

1 2 3 4
RMSE 5.14 5.01 5.11 5.29
r 0.47 0.51 0.49 0.42
ρ 0.42 0.45 0.43 0.40

Table 5.6: Results of changing sentence filter size (hsent) in the SWSC
model on the dev set of the public FCE data set. The hyperparame-
ters/configurations used are the best values from Table 5.4.

FCE dev set. The best results in all evaluation metrics are obtained using

hsent = 2. There are various interpretations for why this size works the

best. First, applying this size, resembles LSA models that are often used

to measure text coherence by estimating the similarity between consecutive

sentences in text [45], [55], [43]. Convolving over two sentences enables the

network to extract features indicating the relatedness between sentences and

thereby, model text coherence. On the other hand, decreasing the filter size

to 1 fails to extract this relatedness and increasing it over 2 overfits the data

and leads to performance decay as the table depicts.

Number of Feature Maps. The number of the feature maps generated

by the convolutional operation indicates the number of features the system

detects in the essay. Intuitively, the less feature maps the model produces,

the more it underfits the data and the more it generates the more it overfits.

We experiment with the numbers commonly used in the literature, on the dev

sets of both datasets; the results for the DWC model are displayed in Table
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Figure 5.3: A depiction of the effect of changing the number of feature maps
in the three models. In DWC, the number in the legend indicates dwrd. In
DWCC, the first number is dwrd, the second is dchr and the third is dwdch. In
SWSC, the first number is dwrd and the second is dsent.

5.7. Additionally, Figure 5.3 plots the change in the training and dev costs on

the public FCE dataset with different number of maps in the three models.

While in DWC there is one map to tune (kwrd), in DWCC there are three

( kchr, kwdch and kwrd) and in SWSC there are two (kwrd and ksent). From

Table 5.7 and Figure 5.3, it is obvious that the differences in the results, when

changing the number of feature maps, are ignorable. This supports Collobert

et al. [20]’s claim that the choice of this number, provided it is large enough,

has a negligible effect on performance. Furthermore, from Figure 5.3, it is

apparent that the training process for all the models is monotonic, which is

a sign of their stability.
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Feature map size
Public FCE Full FCE

RMSE r ρ RMSE r ρ
100 4.74 0.58 0.59 5.22 0.57 0.55
200 4.73 0.58 0.58 5.25 0.56 0.54
300 4.70 0.58 0.59 5.28 0.56 0.54
400 4.77 0.57 0.58 - - -
500 4.76 0.57 0.58 - - -

Table 5.7: Evaluation when using different numbers of feature maps in the
DWC model on the dev sets of both public and full FCE datasets. The
hyperparameters/configurations used are the best values from Table 5.2.

5.6.2 Classification vs. Regression

As illustrated in Table 5.8, using a regression model in the AEA outperforms

classification in all evaluation metrics. Our initial explication for the poor

performance of classification was that it predicts the most common scores in

the training set. Nonetheless, analysing the classification output reveals that

a variety of scores are predicted. In fact, the standard deviation of the clas-

sification predictions on the public FCE dev set is 4.1 while in the regression

model, it is 3.6. However, classification makes more errors that are closer to

the errors by the random baseline (running the random baseline on the public

FCE dev set results in RMSE = 6.7 vs 6.6 by classification). Additionally,

the learning rate for classification had to be higher than regression (0.1 vs.

0.001 respectively). This choice is motivated by the unstable non-monotonic

learning curve obtained by the classification model when applying low learn-

ing rates. This further indicates that classification is not the right approach

for the task as the training process is not stable and the model fails to learn

the features associated with each grade class. Furthermore, as indicated in

Table 5.8, tanh was the nonlinearity choice for classification as ReLU resulted

in exponential growth of network parameters (exploding gradient problem).
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Prediction Non-linearity
learning

rate
# feature maps

(dwrd)
RMSE r ρ

classification tanh 0.1 100 6.6 0.24 0.35
regression ReLU 0.001 100 4.74 0.58 0.59

Table 5.8: Classification vs. Regression results using the DWC model on
the public FCE dev set. The hyperparameters/configurations not mentioned
here are the best values from Table 5.2.

5.6.3 Fine-tuning

As described earlier, fine-tuning enhances the performance by shifting the

continuos embedding space to be more task-specific. As a further investiga-

tion into the effect of fine-tuning, we explore the embedding space by plotting

a sample of it in a 2D graph. Reducing the dimensionality of word vectors

into a 2D space is accomplished using t-Distributed Stochastic Neighbor Em-

bedding (t-SNE) — a technique for dimensionality reduction [56]. We choose

a few words from the public FCE training set that were redistributed in the

space after fine-tuning and compare their distribution prior to fine-tuning

(from the pre-trained space) and after. Figure 5.4 is a graphical depiction

for our findings. In the figure, the red crosses represent the static vectors

and the blue circles represent the fine-tuned ones. It can be noticed that the

words “on”, “in” and “for” get clustered together after fine-tuning. Simi-

larly, “there”, “their”, “it” and “they” are grouped. One possible interpre-

tation for that is that the exam takers frequently use the words that belong

to the same cluster interchangeably, i.e. they use “on” in the context where

“in” should be used and confuse “there” with “their” ...etc. We examine the

public FCE training set to find how these words were misplaced for each other

by investigating the error tags and their suggested corrections. The output

confusion matrix is illustrated in Table 5.9. The numbers in the upper left

part of the table that represent the first cluster are more indicative than

the ones in the lower right representing the second cluster. This confusion

matrix is a possible explanation for how some words get redistributed in the

space; however, there could be other factors that lead to that, all related to

the co-occurrence of words in the training set. To conclude, the exam essays

52



Figure 5.4: The effect of fine-tuning on a few words in the semantic space.
The red crosses represent the static word vectors and the blue circles represent
the ones fine-tuned on the training set of the public FCE dataset, using the
DWC model.

provide new contexts for words and fine-tuning them accordingly makes the

semantic space more tailored for the task.

5.6.4 Other Configurations

Nonlinearity. Using ReLU as an activation function outperforms tanh.

The rationale behind this could be that ReLU is more efficient in handling

the problem of vanishing gradients. As the errors backpropagate in the net-

work and with the small gradient range of tanh, the gradients calculated

at earlier layers become very small; hence, the parameters of these layers

do not get updated or are updated with negligible values. Using ReLU can

remedy this problem. This was verified by observing the parameters and

the gradients when applying each function. Nevertheless, ReLU might cause

the opposite problem of “exploding gradients”, where the parameters grow

exponentially. However, our models do not face this problem except for the
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Used Word
Correction

in on for their there it they
in - 153 28 - - - -
on 292 - 11 - - - -
for 21 40 - - - - -

their - - - - 8 0 1
there - - - 5 - 13 4

it - - - 0 27 - 37
they - - - 2 11 6 -

Table 5.9: Confusion Matrix for a few words in the public FCE training set.

DWC classification model, where tanh was the better choice.

Lowercasing When the input words are lowercased, the system’s perfor-

mance declines. We conjecture that this is attributed to the fact that while

lowercasing increases the frequencies of words and hence, motivates learn-

ing more contexts for words, word casing is one of the criteria used in essay

grading and using wrong cases is usually penalized. Therefore, better results

are achieved with keeping the words in their original form. For instance, if

the DWC network encounters a lowercased word after a full stop, it should

be able to detect that this is a wrong sequence.

Pooling Unlike the results obtained by similar architectures on other tasks

[20], [21], average pooling outperformed max pooling in our models. This can

be explicated by the fact that max pooling selects the highest-value feature

which might discard other useful information. On the other hand, estimating

the average of these features might give a more informative representation

for every feature in the essay, which could be more efficient in the task of

essay assessment. The only case where max pooling is more efficient is with

padded textual units in the DWCC and SWSC models.
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Figure 5.5: Word representations in a 2D semantic space created: (a) from
the fine-tuned word embeddings in the DWC model, (b) from character em-
beddings of the words, in the DWCC model, using a character filter (hchr)
of size 1 and (c) the same as (b) but with filter size 3. The representations
are generated from the public FCE training set.

5.6.5 The Effect of Integrating Character Convolutions

We expected that integrating character convolutions with the DWC model

would enhance the performance for the reasons discussed earlier in Section

4.1.2. However, the results of the DWCC model are very close to the ones

obtained by the DWC model as depicted in Tables 5.11 and 5.12, which

shows that the DWCC model does not help, if not harm, the performance.

We further investigate into the effect of applying character convolutions by

visualizing a few word vectors with specific morphological regularities in a 2D

space, using t-SNE, as demonstrated in Figure 5.5. In the figure, the word

representations are created: (a) from the fine-tuned vectors in the DWC

model, (b) from the character embedding representations of words5 using a

character filter size hchr = 1 and (c) the same as (b) but with hchr = 3.

All the representations are generated from the public FCE training set. In

(c), there is a noticeable pattern of how the adverbs and their adjectives are

structured in the space. In order to get from an adjective (ending with “ful”)

to its adverb (ending with “fully”), the shift should be towards the upper left

5This embedding is the output of the upper part of Figure 4.2.
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side of the space. It is also interesting how the adverbs are grouped together

and the same for the adjectives, except for “successful”. This structure gets

disarranged in (a) and (b). This shows that the character convolutions of

size 3 are able to detect the morphological structure of words. In the case

of using a filter of size 1, there is actually no convolution operation applied;

hence, max pooling operates over the features of individual characters not

a sequence where morphological properties can be detected. Surprisingly,

size 1 outperforms size 3 and thereby was used in the final DWCC model;

although, as graphically revealed, size 3 is more informative. From these

observations, we come up with two main conclusions:

1. Despite being successful in a variety of tasks [54], [38], [37], integrating

character convolutions with word ones has an ignorable effect in the

task of essay assessment.

2. It is possible that the way character convolutions are integrated with

word convolutions is not efficient and the model perceives them as noise

in the data rather than informative representations. Further investiga-

tion is needed to figure out better methods for integration.

5.6.6 Training on More Data

The motivation behind using two datasets, while one is the subset of the

other, is to examine the effect of increasing the training data size on the

performance. Table 5.11 shows that in the three models, the public FCE

(small dataset) outperforms the full FCE when evaluating on their dev sets

in all evaluation metrics. However, this is not an even comparison since they

are evaluated on different dev sets. When both datasets are evaluated on

the same test set, the full set performs better for the three models in all

evaluation metrics (Table 5.12).

Interestingly, the SWSC model is the one that gets enhanced the most when

training on more data. Its RMSE decreases by 0.77 and its Pearson’s and

Spearman’s correlations increase by 0.19 and 0.17 respectively. This could
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Figure 5.6: Comparison of learning curves of the DWC model on the public
and full FCE train and dev sets.

indicate that deeper models need more data to improve their performance.

It also makes intuitive sense for the SWSC model to be more sensitive to the

size of the training data. Learning from combinations of sentences is sparser

than leveraging words; hence, adding more training data helps remedy this

sparsity.

In general, with more data, the models process more instances and thereby,

learn more features. Furthermore, additional data makes the models more

robust against overfitting (Section 2.1.2). This can be clear from Figure 5.6

that compares the learning curves of the public and full FCE DWC models,

when using the same number of feature maps (300).

5.6.7 Sensitivity to Order

As described earlier in Section 2.2.2, CNNs are transitionally invariant due

to the pooling operation that detects features wherever they occur in text.

This property might make our convolutional models less sensitive to word

order. To verify this, we conduct two experiments. The first is to shuffle

the words randomly in the test set and run the DWC public FCE model.

The second is to shuffle the sentences randomly in the test set and run the

SWSC public FCE model. Shuffling for both experiments is done 5 times
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Model
Evaluation

RMSE r ρ
DWC with original test set 5.29 0.50 0.45
DWC with shuffled words 5.49 0.45 0.40

SWSC with original test set 5.59 0.38 0.39
SWSC with shuffled sentences 5.86 0.24 0.25

Table 5.10: Evaluation of DWC and SWSC trained on public FCE and tested
on: the original test set, shuffled-word test set (with the DWC model) and
shuffled-sentence test set (with the SWSC model).

with different seeds and the resulted evaluation metrics are averaged among

the trials to eliminate the chance factor. The results are depicted in Table

5.10. The gold scores for these shuffled essays are not provided. However,

the target of these experiments is to verify whether the models are sensitive

to order or they just mimic Bag-Of-Word models. The results in the table

reveal that the performance decreases in all evaluation metrics in the two

shuffled models. This shows that word order (in DWC) and sentence order

(in SWSC) play an inherent role in the prediction. In the DWC model, the

order is maintained between the words inside each window of the size of the

convolving filter. Shuffling the words would then result in different detected

features; hence, different results. In the SWSC model, consecutive sentences

are expected to be related by repetition of words for instance. When the

sentence order changes, unrelated sentences would be grouped which would

lead to different predictions. This is a further evidence that the SWSC system

can model essay coherence.

5.6.8 Comparison between Models

Table 5.12 reveals that out of the three models (DWC, DWCC and SWSC),

DWC performs the best when training on the public dataset in the three

evaluation metrics. However, on the full dataset, the SWSC model outper-

forms the other two in RMSE, performs equally in Spearman’s correlation

and worse in Pearson’s correlations. Since Pearson’s correlation is sensitive
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Model
Public FCE Full FCE

RMSE r ρ RMSE r ρ
DWC 4.70 0.58 0.59 5.22 0.57 0.55

DWCC 4.71 0.58 0.59 5.25 0.57 0.55
SWSC 5.01 0.51 0.45 5.16 0.58 0.56

Table 5.11: Results of the three models on the public and full FCE dev
datasets.

to outliers and hence, is not a very robust measurement, we conclude that

SWSC trained on the full set is the best model.

We measure the correlations between the three models to verify whether they

complement each other, hence combining them is beneficial, or this combi-

nation is redundant. We calculate the models’ inter-Spearman’s correlations

when trained on the full set. The correlations show that the DWC and

DWCC models are almost identical, since they correlate with 0.99. This

further proves that integrating character convolutions was redundant and

the model did not learn additional features from it. The DWC and DWCC

models highly correlate with the SWSC model with 0.84 and 0.83 respec-

tively. While this is a very high correlation, it still indicates that the SWSC

model is able to detect some features that the other two fail to detect and

vice-versa. We conduct an experiment to combine the SWSC and the DWC

models6. We simply average the scores, of the test set, predicted by both

models. The output scores have a lower RMSE, higher Spearman’s and the

same Pearson’s correlations in comparison to all the other models. As de-

picted in Table 5.12, this model (DWC + SWSC (Full)) achieves the best

results: RMSE = 4.69 , r = 0.62 and ρ = 0.58. This is accomplished by a

simple method of averaging the scores. Nevertheless, further investigation

is needed for other ways to combine the models and leverage the ability to

extract document-level features (DWC) and sentence-level ones (SWSC).

6We choose the DWC rather than the DWCC because it performs better and is simpler
in implementation and faster in running.
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Model
Evaluation

RMSE r ρ
DWC (Public) 5.29 0.50 0.45

DWCC (Public) 5.34 0.48 0.44
SWSC (Public) 5.59 0.38 0.39

DWC (Full) 4.93 0.62 0.56
DWCC (Full) 4.95 0.62 0.56
SWSC (Full) 4.82 0.57 0.56

DWC + SWSC
(Full)

4.69 0.62 0.58

Table 5.12: Results of the three models trained on the public and full FCE
datasets when tested on the final test set.

5.6.9 Comparison with Other Models

Table 5.13 compares our best model to the random baselines, generated from

the public and full datasets, and the SVM system. The comparison of our

system and the random baseline reveals that all our models on all the datasets

outperform this baseline. Although this random benchmark tries to minimize

the error by predicting the “safe” scores that do not deviate much from the

mean score, it still produces higher errors than our system. It also has zero

correlations which is normal since it does not differentiate between good and

bad essays. The comparison with this baseline shows that the models imple-

mented herein can learn writing quality features that are useful to predict

essay grades.

Despite the promising results of our system, it still underperforms the state-

of-the-art SVM model [6]. This comparison is using only correlation metrics

since no RMSE evaluation was provided in the SVM system. As shown in

Table 5.13, the SVM model involves heavy feature engineering whereas our

model only leverages word representations. Our system has the advantage

of fully automating the prediction process with minimal reliance on outer

systems (machines or humans) for feature handcrafting. Since CNNs could

extract high-level features that are hard to be manually defined, it would be

interesting to combine the CNN and SVM systems in order to learn comple-
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Model Features
Evaluation

RMSE r ρ
DWC + SWSC

(Full)
Word embeddings 4.69 0.62 0.58

Random Baseline
(Public)

- 6.83 0 0

Random Baseline
(Full)

- 7.20 -0.01 -0.01

SVM State-of-the-art

Word unigrams
Word bigrams
POS unigrams
POS bigrams
POS trigrams

Phrase structure rules
GR distance measures

Script length
Error-rate

- 0.74 0.77

Table 5.13: Comparison with Other Systems.

mentary features of different levels.

5.6.10 Error Analysis

We further analyse our models’ predictions and the properties of the tested

essays to investigate any correlations between the two. The essay properties

are divided into two sets: general properties and error types.

General Properties. We examine the following properties in the test es-

says and measure their Spearman’s correlations with the 6 models’ predic-

tions (three models on two datasets) as well as the gold scores of the essays:

1. Total number of errors: counted as the number of erroneous words

detected in the error tags (<e><i></i></e>).

2. Number of unknown words (unk): counted as the number of unknown

words encountered in the test essays yet do not occur in the public FCE
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Figure 5.7: Spearman’s correlations between the predictions of the different
systems and the test essays’ properties. The properties from left to right are:
number of total errors, number of unknown words (unk), essay length, size
of vocabulary, number of sentences and average sentence length.

training set (or occur once). We measure the correlation between this

property and the test scores generated by the public and full models.

The unknown words that are absent from the full FCE training set are

not used in order to unify the comparison criteria, since it is inaccurate

to compare the public and full models on different unk counts. This

is especially valid since the the average number of unknown words per

essay when training on the public FCE is 24 with std = 14 while on

the full FCE the average is 8 with std = 9. The last two numbers

indicate that using unknown word counts from the full FCE is not very

informative. Therefore, we compare the public and full models with

the unk counts from the public FCE training data.

3. Essay length: counted as the number of words in the essay.

4. Vocabulary size: counted as the number of unique words used in the

essay.

5. Number of sentences.

6. Average sentence length.

The results are plotted in Figure 5.7. Analysing the figure, we come up with

a few observations:
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• It is obvious that all the models correlate with the total errors, essay

length, vocabulary and average sentence length in the same direction

as the gold scores, which is a good sign.

• The models’ sensitivity to the total number of errors gets higher when

training on more data (full FCE), which shows that adding more data

improves their ability to detect writing errors.

• On one hand, the gold scores do not correlate with the number of

unknown words, which is natural. On the other hand, the public models

are more sensitive to this number, since they are trained on less data

(less words), than the full models. The exception here is the SWSC

model; its correlation slightly increases in the negative direction when

adding more data. There is no clear reason for that, yet this can be

attributed to the fact that the sentence models are less sensitive to

word features than the word models. Therefore, the correlation with

the unk words is less indicative in this model. In general, the negative

correlation with the number of unknown words, while they do not have

an effect on the ground-truth scores, indicates that this number is one

of the factors that leads to prediction errors.

• The public DWC and DWCC models’ correlations with the essay length

are very close to the gold scores. This positive correlation might show

that better essays are usually longer. Nonetheless, it is unclear why the

correlations get lower with more data. Furthermore, the correlations

are sightly lower in the SWSC model. As mentioned before, this could

stem from the assumption that this model is more sensitive to sentence

features rather than word ones.

• The public DWC and DWCC models’ correlations with the vocabulary

size is almost identical to the gold scores. This positive correlation is in-

tuitive since good writers tend to use a wide variety of vocabulary. The

correlation gets slightly lower, yet still positive, with more data, which

needs further investigation. The SWSC model behaves differently for

the same reasons mentioned in the previous two points.
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Error code Description Frequency Error code Description Frequency
R Replace Error 752 RN Replace Noun 165

RP Replace Punctuation 513 UP Unnecessary Punctuation 140
W Word Order Error 413 UD Unnecessary Determiner 133
S Spelling Error 363 AS Argument Structure Error 131

MD Missing Determiner 350 MT Missing Preposition 106
TV Incorrect Tense of Verb 324 UT Unnecessary Preposition 97
MP Missing Punctuation 289 AGV Verb Agreement Error 90
RT Replace Preposition 275 ID Idiom Wrong 87
RV Replace Verb 227 RJ Replace Adjective 86
FV Wrong Verb Form 193 MA Missing Anaphor 77

Table 5.14: The most common 20 errors in the test essays with their frequen-
cies.

• The gold scores slightly correlate in the positive direction with the num-

ber of sentences. However, all the DWC and DWCC models negatively

correlate with this number but with correlations very close to zero so,

they can be ignored. This is an expected result since these models are

agnostic to sentences. On the other hand, the SWSC models are more

sensitive to the number of sentences as a result of how they operate.

• The average sentence length has the highest impact on the SWSC mod-

els, as expected, specially the public model (0.5 correlation). This

shows that this model is biased towards essays with longer sentences

whereas, from the previous point, it is biased against models with many

sentences.

• It would be interesting to find a method to moderate the SWSC model’s

positive bias towards sentence length and negative bias towards sen-

tence count.

Error Types. We further investigate whether the systems have any biases

towards any types of errors by measuring Spearman’s correlation between

their predictions and the frequency of each error type in the test essays. We

measure the same correlation with the ground-truth scores. The selected

error types for comparison are the most frequent 20 types; their description

is depicted in Table 5.147. The errors are detected as the number of erroneous

7For more details about error types, we refer the reader to Nicholls [49].

64



words for each error type. Figure 5.8 is a visualization for the correlations.

There are a few observations to draw from this figure:

• There are no high correlations between any error type and the models’

predictions or the gold scores, except for −0.45 between the gold scores

and spelling errors. This shows that none of the systems or the human

graders have strong biases towards certain error types.

• For most of the errors, the models’ correlations are in the negative

direction, similar to the gold scores, which indicates the system’s ability

to identify writing errors. The same conclusion can be drawn from the

correlations with the total number of errors.

• The ID error type, which means using wrong idioms, positively cor-

relates with all the models with the highest correlation with the gold

scores. A possible explanation is that good essay writers who use a

variety of vocabulary might tend to write overcomplicated expressions

that are linguistically incorrect. For instance, one of these detected

errors is:

<e type=“ID”><i>as far as I am concerned</i><c>in my

opinion</c></e>

• The three models, specially their full FCE versions, have close corre-

lations to the gold ones with AGV error, which could indicate their

ability to identify grammatical errors.

• In general, adding more data makes the models more sensitive to most

of the error types. For instance:

– The three models become more sensitive to spelling errors after

training on more data.

– The gold scores are slightly sensitive to R, RV and UT error types;

whereas, all the systems correlate poorly with these errors. How-

ever, adding more data improved these correlations. For instance,

with R and RV errors, the correlations transformed from positive

to negative with more data.
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• It was expected that the DWCC model would perform better on spelling

and AGV errors (see the motivations in 4.1.2); however, it performs

almost identical to the DWC model.
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Chapter 6

Summary and Conclusions

We proposed employing convolutional networks to address the task of essay

scoring. With initial experimentation, we conclude that this task is better

casted as a regression problem rather than classification. This stems from the

unstability of the training process and producing prediction errors close to

those by the random baseline in the classification model. We built three con-

volutional architectures. The first two are document-level models with word

convolutions in the first and word plus character convolutions in the second.

The third is a sentence-level model with word and sentence convolutions. Our

results show that the sentence-level model outperforms the document-level

ones when trained on more data. The performance was further enhanced

by averaging the predicted scores of the first and third models, which moti-

vates investigating more efficient ways to combine them. This combination

could provide two perspectives about the essay: an overall perspective as a

sequence of words and a more detailed one as a sequence of sentences. On

the other hand, leveraging character embeddings did not have any noticeable

effect on the performance. We attribute this to two possible reasons: either

character embeddings are not useful for essay assessment or other methods

for integrating them with word convolutions need to be examined.

Training the neural models revealed the importance of tuning their param-

eters. Various experiments with filter sizes showed that the best values are
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three for word filters, one for characters and two for sentences. Empirical

evaluation also exhibited that average-pooling, ReLU activation function and

using pre-trained embeddings outperform max-pooling, tanh activation and

random vector initialization respectively. Fine-tuning the word embeddings

was essential for better results while changing the number of feature maps

had minimum effect on the output. Furthermore, training on more data

enhanced the performance, especially with the sentence model.

Further investigation into the results led to interesting conclusions. An ex-

periment that shuffles the test essays’ words and another that shuffles the

sentences revealed that the models are not agnostic to word and sentence

order despite the transitionally-invariant nature of CNNs. This could also be

an indication that the sentence model can capture writing coherence aspects.

A further error analysis showed that the models’ predictions are sensitive to

essay length, vocabulary size and the number of unknown words. The sen-

tence model is particularly sensitive to the number of sentences and their

average length. Moreover, the correlations between the systems’ predictions

and the number of errors as well as error types in test essays indicate the

models’ ability to detect writing errors, particularly after adding more train-

ing data. In addition, these correlations showed that the models do not have

strong biases towards any error types.

When comparing with other systems, all our models outperformed the ran-

dom baseline yet underperformed the state-of-the-art SVM model. The SVM

system relied on heavy feature engineering to handcraft various linguistic and

grammatical features. Encoding these features was achieved by other re-

sources such as parsers or large corpora to estimate error rates. On the other

hand, our models relied only on word vector representations yet produced

promising results that indicate their ability to learn features associated with

writing quality. Furthermore, our system has the advantage of being more

generalizable and can be applied to other datasets since it only depends on

word embeddings as features. Nonetheless, the SVM model lack this gener-

alization ability due to its heavy reliance on other resources and handcrafted

features. For instance, the SVM system needs a lot of modifications (rein-
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venting the wheel) to be applied to other datasets of other languages, while

this should not be a problem in our convolutional models. In general, it

would be interesting to combine the SVM and convolutional models in the

essay assessment task in order to learn complementary features of different

levels.
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Morin, and Jean-Luc Gauvain. Neural probabilistic language models.
In Innovations in Machine Learning, pages 137–186. Springer, 2006.

[31] Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards
ai. Large-scale kernel machines, 34(5), 2007.
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